
My very first self-written encryption program (~1980)
Bernd Fix    <brf@hoi-polloi.org>

Introduction

During my last year at school (around 1980) the new-founded “computer lab” at our school was equipped
with some four Commodore PET 8032 computers, which capturedmy interest early on and allowed me to
expand my computer expertise that started when working on an older PET 2001 two years before.
The main advantage of the 8032 boxes was the availabillity of a floppy drive (although the 8032 was still
equipped with an external datasette), but floppies where expansive at that time and could not be bought
anywhere close to the place I lived. Luckily the “lab” provided a diskette for every user, but you were not
allowed to take these home – they where kept in an (unlocked) box at school. So anyone could get the
floppy of another user and have a look at the programs (and data) stored on them.
All my assembler programs were quite “safe” – just one or two other users were able to read them anyway
and these were kind of friends, so I didn't worry about that. But all the BASIC programs I wrote were
“open” to everyone – especially the teachers. So I thought of a way to protect these BASIC programs from
unwanted inspections...
I wrote a small assembler program called “CIPHER” to en- and decrypt these files. I stored my BASIC
programs encrypted on the floppy and decrypted them before editing or executing them. The cipher
applicationitselfwasstoredonanaudiotape(tobeusedwiththedatasette),soIcouldtakeithomewith
no problems.
After leaving school and going to university I worked on quite a few more interesting computer systems
(UNIVAC 1108, PDP-11, IBM/370), so I forgot about the PET 8032 – it simply wasn't “sexy” anymore. But
forwhateverreasonIkeptthe audiotape withthe cipher program...
After some 30 years I re-discovered that audio tape – my very first self-written encryption program! Since
my main interest in computers since the mid-80's was computer security (and therefore cryptology), I
decided to re-engineer it – there was no documentation whatsoever, just the plain binary file on a tape.
Using VICE on my Linux box I actually got it to run...

Loading the CIPHER program

The program on tape was somewhat protected from being loaded by someone not too familiar with the
system–thenamecontainedcharactersthatpreventeditfrombeingfetchedusingasimpleLOAD
command. You had to do something like the following to get it loaded:

s$=chr$(34)+"cipher"+chr$(34):load s$,1 
press play on tape #1
ok 
searching for "cipher" 
found "cipher" 
loading 
ready. 

The assembler program was loaded into the memory from $033A to $03FF, which is usedas the buffer for
a second datasette drive. Since no second datasette was attached tothe system, the program stayed
there withoutbeingdestroyedbyanother(BASIC)programonthe computer –anditwasresidentuntilthe
computer was resetted or turned off.



Encrypting a BASIC program

BASIC programs on the PET are a linked list of memory chunks that each represent a single (numbered)
line of the program, so editing a program usually fragments the memory. To get it packed after editing, you
have to store it in clear-text form first – it will later be overwritten by the encrypted program.
Lets assume our program is stored on the floppy under the name TEST. First we have to find the size of
the program in memory by getting the free memory space before and after loading the program:

new 
ready. 
print fre(0) 
 31741 
ready. 
load "test",8 
searching for test 
loading 
ready. 
list 
 10 for i=1 to 100 
 20 print i 
 30 next i 
ready. 
print fre(0) 
 31709 
ready.

The simple TEST program occupies 32 bytes (31741-31709), but we have to add some bytes to cover
leading and trailing bytes. I used to add 8 bytes for that (just to be save – three bytes would be sufficient),
so the total length in our example is 40 bytes ($28).
ThenextstepistoinvoketheCIPHERprogram viatheSYScommand;weareaskedforacode
(passphrase) that is terminated by the return key. After encryption a LIST command shows only garbage:

sys 908 
code : 
testkey 
program de-/ciphered 
ready. 
list 
 21155 $+restorecmd%sysson:director 
                                   +stepexpagp.!formula too 
complex+.<cos 
 43434 expagp.!formula too complex+.<cos 
 59914 +.<cos 
ready. 

You can't save the encrypted program with the standard SAVE command – I guess the SAVE routine tries
to “interpret” the program and get messed up. You have to use the built-in monitor (TIM) to save it and that
requires the knowledge of the memory range to be saved. BASIC programs always start at address $0400
andthe endaddresscanbe calculatedfromthe programlengthwehave determinedbefore:

sys 1024 
b* 
     pc  irq  sr ac xr yr sp 
.;  0401 e455 32 04 5e 00 f8 
.s "test",#8,0400,0428 
.x
ready



Now the encrypted BASIC program is stored on the floppy.

Decrypting a BASIC program

You can't load an encrypted program with the standard LOAD command for probably the same reason
why you can't save it with the standard SAVE command. Again we have to use TIM to read it back and
start the decrpytion. After that the LIST program shows the original and executable program again:

sys 1024
b* 
     pc  irq  sr ac xr yr sp 
.;  0401 e455 32 04 5e 00 f8 
.l "test",#8 
searching for test 
loading 
.g 038c 
code : 
testkey 
program de-/ciphered 
?syntax error 
ready. 
list 
 10 for i=1 to 100 
 20 print i 
 30 next i 
ready. 

The CIPHER program

To compile the CIPHER program I used an assembler that was written by a friend and myself in BASIC –
that program now resides in the digital nirvana and is lost forever. So no source code for the CIPHER in its
original form is available; the following is a manual disassembly of the binary executable that survived the
fimes. If you want to recompile it with an assembler, you probably have to make some minor adjustments
to the code.
One mystery remains: the last JMP instruction branches to a ROM routine and I have no idea what that
really does – I simply can't remember. Probably it does some clean-up, breaks from TIM or whatever –
running it from TIM under VICE results in an “?syntax error” that was probably not the case in the original
version.Maybe Iamjustusinga differentROMimage withVICE,soitsnotdoingwhatwasintended.Butit
seems to work anyhow...

*=$033A
;--------------------------------------------
; Cipher stream generator: 4-byte LFSR in
; zero page registers (16-19); cipher byte
; is lowest register (16).
; Feedback bit is (bit31 ̂ bit7).
;--------------------------------------------
CSG TXA

PHA
LDX #$07

L1 LDA $13
EOR $10
ASL
ASL
ROL $10
ROL $11
ROL $12
ROL $13
DEX
BPL L1



PLA
TAX
RTS

;--------------------------------------------
; En-/decrypt BASIC program (line by line)
; - init pointer (1,2) to 0x401 (first line)
; - save address of next line in (3,4)
;   terminate if next address is zero
; - compute length of line in X
; - process next byte in line
; - set address of next line as current
;--------------------------------------------
PROC LDA #$01

STA $1
LDA #$04
STA $2

L5 LDY #$00
LDA ($01),Y
STA $3
INY
LDA ($01),Y
BNE L2
RTS

L2 STA $04
SEC
LDA $03
SBC $01
BCS L3
ADC $FF

L3 TAX
DEX
DEX
DEX

L4 INY
JSR CSG
LDA ($01),Y
EOR $10
STA ($01),Y
DEX
BNE L4
LDA $03
STA $01
LDA $04
STA $02
BNE L5

;--------------------------------------------
; Program entry point ('SYS 908', $038C)
; - prompt for code sequence
; - store code input in buffer
; - clear/reset LFSR
; - set LFSR from code input (length in X)
; - en-/decrypt BASIC program
; - print success message
; - clean-up? break from TIM?
;--------------------------------------------
ENTRY LDX #$00
L6 LDA MSG1,X

JSR $FFD2
INX
CPX #$0A
BNE L6
LDX #$00

L8 JSR $FFCF
CMP #$0D
BEQ L7
STA ($20),X
INX
BNE L8

L7 LDY #$03



LDA #$00
L9 STA $10,Y

DEY
BPL L9
STX $00
LDX #$00

L12 LDY #$03
L11 LDA $20,X

EOR $10,Y
STA $10,Y
INX
CPX $00
BMI L10
DEY
BPL L11
BMI L12

L10 JSR PROC
LDX #$00

L13 LDA MSG2,X
JSR $FFD2
INX
CPX #$18
BNE L13
JMP $C735

;--------------------------------------------
; Application messages
;--------------------------------------------

.byte $EA,$EA
MSG2 .byte $0D,$0D,$50,$52,$4F,$47,$52,$41 ; ..PROGRA

.byte $4D,$20,$44,$45,$2D,$2F,$43,$49 ; M DE-/CI

.byte $50,$48,$45,$52,$45,$44,$0D,$0D ; PHERED..
MSG1 .byte $93,$0D,$43,$4F,$44,$45,$20,$3A ; ..CODE :

.byte $0D,$0D

Final thoughts

The encryptionis–usingtodaysandevenyesterdaysstandards–farfromsecure inanyway,butitwasat
that time certainly sufficient to keep teachers from inspecting my programs. It uses only a 31 bit key, so it
will nowadays take just seconds to break the cipher. On the other hand, there are certainly not many other
encryption programs around that do a better job with just 198 bytes of program code.


